Volume 41 | Number 1 | February 2006

Abstract List

Boris Sobolev, Adrian Levy, Robert Hayden, Lisa Kuramoto


Objective

To determine whether the probability of undergoing coronary bypass surgery within a certain time was related to the number of patients on the wait list at registration for the operation in a publicly funded health system.


Methods

A prospective cohort study comparing waiting times among patients registered on wait lists at the hospitals delivering adult cardiac surgery. For each calendar week, the list size, the number of new registrations, and the number of direct admissions immediately after angiography characterized the demand for surgery.


Results

The length of delay in undergoing treatment was associated with list size at registration, with shorter times for shorter lists (log‐rank test 1,198.3, <.0001). When the list size at registration required clearance time over 1 week patients had 42 percent lower odds of undergoing surgery compared with lists with clearance time less than 1 week (odds ratio [OR] 0.58 percent, 95 percent, confidence interval [CI] 0.53–0.63), after adjustment for age, sex, comorbidity, period, and hospital. The weekly number of new registrations exceeding weekly service capacity had an independent effect toward longer service delays when the list size at registration required clearance time less than 1 week (OR 0.56 percent, 95 percent CI 0.45–0.71), but not for longer lists. Every time the operation was performed for a patient requiring surgery without registration on wait lists, the odds of surgery for listed patients were reduced by 6 percent (OR 0.94, CI 0.93–0.95).


Conclusion

For wait‐listed patients, time to surgery depends on the list size at registration, the number of new registrations, as well as on the weekly number of patients who move immediately from angiography to coronary bypass surgery without being registered on a wait list. Hospital managers may use these findings to improve resource planning and to reduce uncertainty when providing advice on expected treatment delays.